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Acoustic energy and momentum in a moving medium

Michael Stone*
Department of Physics, University of Illinois, 1110 West Green Street, Urbana, Illinois 61801

~Received 12 October 1999!

By exploiting the mathematical analogy between the propagation of sound in a nonhomogeneous potential
flow and the propagation of a scalar field in curved space-time, various wave ‘‘energy’’ and wave ‘‘momen-
tum’’ conservation laws are established in a systematic manner. In particular, the acoustic energy conservation
law due to Blokhintsev appears as the result of the conservation of a mixed covariant and contravariant
energy-momentum tensor, while the exchange of relative energy between the wave and mean flow, first noted
by Longuet-Higgins and Stewart in the context of ocean waves, appears as the covariant conservation of the
doubly contravariant form of the same energy-momentum tensor.

PACS number~s!: 43.28.1h, 43.20.1g, 43.25.1y, 67.40.Mj
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I. INTRODUCTION

Many discussions of the ‘‘energy’’ and ‘‘momentum’’ as
sociated with waves propagating through moving fluids c
be found in the physics@1#, engineering@2–6#, and math-
ematical fluid mechanics literature@7–16#. Various defini-
tions are proposed, some of which lead to conserved qua
ties, and some to quantities that are not conserved but ins
exchanged between the wave and the mean flow. In part
multiplicity of definitions is due to difficulty in deciding
what fraction of the energy or momentum of the syst
properly belongs to the wave and what fraction should
associated with the moving medium. It is also often uncl
how to divide equations expressing conservation laws
terms relating to the conserved quantity, and terms actin
sources for this quantity. Related to these primarily cosm
problems are more fundamental issues as to whether
‘‘energy’’ or ‘‘momentum’’ under discussion is the tru
Newtonian energy or momentum, or instead pseudoene
and pseudomomentum. Thus we have the question ‘‘Wha
the momentum of a sound wave?’’ raised by Peierls in
book Surprises in Theoretical Physics@17#, and the salutary
polemic ‘‘On the Wave Momentum Myth’’ by McIntyre
@18#.

The most extensive analyses of conserved wave pro
ties have been carried out by the fluid mechanics commu
@7–15#. Typically these papers adopt a Lagrangian~follow-
ing individual particles in the flow! or mixed Lagrangian-
Eulerian approach, as opposed to the purely Eulerian~de-
scribing the flow in terms of a velocity field! approach which
would be most familiar to a physicist. In addition, a physic
reading this literature feels the lack of a general organiz
principle behind the definition and derivation of the cons
vation laws. The present paper is intended to remedy som
these problems—at least for the special case of sound w
propagating through an irrotational homentropic flow. A
though a rather restricted class of motions, this is still one
considerable interest in condensed matter physics as i
cludes phonon propagation in a Bose condensate, and so
at the heart of the two-fluid model of superfluidity. By e
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ploiting Unruh’s ingenious identification@19,20# of the wave
equation for sound waves in such a flow with the equat
for a scalar field propagating in curved space-time, I extr
the conservation laws from the principle of general cova
ance. Deriving the conservation laws in this way may se
like a case of taking a sledgehammer to crack a nut, but
formalism is familar to most physicists, automatic in app
cation, and the ambiguities in defining the conserved qua
ties turn out to lie in the choice of whether to identify th
energy-momentum tensor asTmn or asTn

m . Also, when quan-
tities are not conserved, as is the case of the wave mom
tum in a shear flow, their sources arise naturally from
connection terms in the covariant derivative.

In Sec. II, I discuss the action describing the irrotation
motion of a homentropic fluid. In Sec. III, I derive Unruh’
equation from the action principle. In Sec. IV, I explain wh
we often need information beyond the solutions of the l
earized wave equation, and in Sec. V derive the conserva
equations that follow from the linearized equation. Sect
VI interprets these equations in terms of the motion
phonons. In the discussion section I consider the connec
between the conservation laws and forces.

The work reported here was motivated by a desire to b
ter understand the role of acoustic radiation stress in the t
fluid model. It may be relevent to the recent controver
@22–25# over theIordanskii forceacting on a vortex moving
with respect to the normal fluid component. The use of
Unruh formalism in this context was suggested by Volov
@26#.

II. THE ACTION PRINCIPLE

The most straightforward way of deriving conservati
laws starts with an action principle. From this, Noethe
theorem provides us with an explicit formula for a conserv
quantity corresponding to each symmetry of the action.
fluid mechanics unfortunately—at least when we restrict o
selves to a eulerian description of the flow field—action pr
ciples are in short supply. Of course there must existsome
action principle because ultimately the fluid can be treated
a system of particles. A particle-based action, however,
quires a Lagrangian description of the flow. When it is ree
1341 ©2000 The American Physical Society
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1342 PRE 62MICHAEL STONE
pressed in Eulerian terms, constraints appear, and these
its utility.

If we restrict ourselves to flows that are both irrotation
and homentropic—the latter term meaning in practice t
pressure is a function of the fluid density only—then t
number of degrees of freedom available to the fluid is d
matically reduced. In this case the Eulerian equations of m
tion are derivable from the action@27#

S5E d4x@rḟ1 1
2 r~¹f!21u~r!#. ~2.1!

Herer is the mass density,f the velocity potential, and the
overdot denotes differentiation with respect to time. T
functionu may be identified with the internal energy densi

Equating to zero the variation ofS with respect tof
yields the continuity equation

ṙ1“•~rv!50, ~2.2!

wherev[“f. Varying r gives Bernoulli’s equation

ḟ1 1
2 v21m~r!50, ~2.3!

wherem(r)5du/dr. In most applicationsm would be iden-
tified with the specific enthalpy. For a superfluid condens
the entropy densitys is identically zero andm is the local
chemical potential.

It is worth noting that our action couldnot have arisen
from some rewriting of the action for the motion of a syste
of individual particles. We are allowing variations ofr with-
out requiring simultaneous variations off, and such varia-
tions conjure new matter out of nothing.

The gradient of the Bernoulli equation is Euler’s equati
of motion for the fluid. Combining this with the continuit
equation yields a momentum conservation law

] t~rv i !1] j~rv jv i !1r] im50. ~2.4!

We simplify Eq.~2.4! by introducing the pressureP, which
is related tom by P(r)5*r dm. Then we can write

] t~rv i !1] jP j i 50, ~2.5!

whereP i j is given by

P i j 5rv iv j1d i j P. ~2.6!

This is the usual form of the momentum flux tensor in flu
mechanics.

The relationsm5du/dr andr5dP/dm show thatP and
u are related by a Legendre transformation:P5rm2u(r).
From this and the Bernoulli equation we see that the pres
is equal to minus the action density:

2P5rḟ1 1
2 r~¹f!21u~r!. ~2.7!

Consequently, we can write

P i j 5r] if] jf2d i j @rḟ1 1
2 r~¹f!21u~r!#. ~2.8!

This is the flux tensor that would appear were we to u
Noether’s theorem to derive a law of momentum conser
tion directly from the invariance of the action under t
it
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translationf(r )→f(r2a), r(r )→r(r2a). This is not a
trivial point because there are two similar, but distinct, n
tions of ‘‘momentum.’’ True momentum is associated wi
the symmetry of the action under a simultaneous transla
of all the particles in the system. Its conservation requires
absence of external forces.Pseudomomentum@21# is the
quantity that is preserved when the action is left invaria
when thedisturbancein the medium is relocated, but th
reference position of each individual particle is left u
changed. Conservation of pseudomomentum requires ho
geneity of the medium rather than of space. Replacing
field f(r ) by f(r2a) would normally correspond to the
latter symmetry, but, because of the absence of explicit p
ticles, at this point in our discussion the two concepts co
cide.

III. THE UNRUH METRIC

We now obtain the linearized wave equation for t
propagation of sound waves in a background mean flow.

f5f (0)1f (1) ,
~3.1!

r5r (0)1r (1) .

Here f (0) and r (0) define the mean flow. We assume th
they obey the equations of motion. The quantitiesf (1) and
r (1) represent small amplitude perturbations. ExpandingS to
quadratic order in these perturbations gives

S5S01E d4xFr (1)ḟ (1)1
1

2 S c2

r (0)
D r (1)

2

1
1

2
r (0)~¹f (1)!

21r (1)v•¹f (1)G . ~3.2!

Herev[v(0)5¹f (0) . The speed of soundc is defined by

c2

r (0)
5

dm

dr U
r(0)

, ~3.3!

or more familiarly

c25
dP

dr
. ~3.4!

The terms linear in the perturbations vanish because of
assumption that the zeroth-order variables obey the equa
of motion.

The equation of motion forr (1) derived from Eq.~3.2! is

r (1)52
r (0)

c2
~ḟ (1)1v•¹f (1)!. ~3.5!

In general we are not allowed to substitute a consequenc
an equation of motion back into the action integral. He
however, becauser (1) occurs quadratically, we may use E
~3.5! to eliminate it and obtain an effective action for th
potentialf (1) only,
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PRE 62 1343ACOUSTIC ENERGY AND MOMENTUM IN A MOVING MEDIUM
S(2)5E d4xS 1

2
r (0)~¹f (1)!

22
r (0)

2c2
~ḟ (1)1v•“f (1)!

2D .

~3.6!

The resultant equation of motion forf (1) is @19,20#

S ]

]t
1“•vD r (0)

c2 S ]

]t
1v•“ Df (1)5“~r (0)“f (1)!.

~3.7!

Note that in deriving this equation we havenot assumed tha
the background flowv is steady, only that it satisfies th
equations of motion. Naturally, in order for our waves to
distinguishable from the background flow, the latter sho
be slowly changing and have a longer length scale than
wave motion.

Equation~3.7! can be rewritten so as to contain conve
tive time derivatives:

S ]

]t
1v•“ D 1

c2S ]

]t
1v•“ Df (1)5

1

r (0)
“~r (0)“f (1)!.

~3.8!

The equivalence of Eqs.~3.8! and ~3.7! is established by
using the mass conservation equation] tr (0)1“•r (0)v50.
At this point it is worth noting that an equation having th
appearance of Eq.~3.8! was derived by Pierce@28# without
any restriction to irrotational motion—but only as an a
proximation valid for slowly varying background flows. I
Pierce’s derivation, the dependent variable, which he c
F, is no longer exactly the velocity potential, and the re
tion v (1)5¹F has corrections ofO(L21)1O(T21), where
L and T are the characteristic length and time of the ba
ground flow inhomogeneities.

Although Eq. ~3.8! may seem more familiar, the form
~3.7! has the advantage that it can be written as1

1

A2g
]mA2ggmn]nf (1)50, ~3.9!

where

A2ggmn5
r (0)

c2 S 1 vT

v vvT2c21D . ~3.10!

This is perhaps most easily seen by observing that the ac
~3.6! is equal to2S where

S5E d4x 1
2 A2ggmn]mf (1)]nf (1)5E d4xA2gL.

~3.11!

Equation~3.9! has the same form as that of a scalar wa
propagating in a gravitational field with Riemann met

1I use the convention that greek letters run over four space-t
indices 0,1,2,3 with 0[t, while roman indices refer to the thre
space components.
d
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gmn . The idea of writing the acoustic wave equation in th
way is due to Unruh@19,20#. I will therefore refer togmn as
the Unruh metric.

As is customary in general relativity, the symbolg de-
notes the determinant of the covariant form of the met
gmn , so detgmn5g21. Taking the determinant of both side
of Eq. ~3.10! thus shows that the four-volume measureA2g
is equal tor (0)

2 /c. Knowing this, we may then invert the
matrix gmn to find the covariant components of the metric

gmn5
r (0)

c S c22v2 vT

v 21D . ~3.12!

The associated space-time interval is therefore

ds25
r (0)

c
@c2dt22d i j ~dxi2v idt!~dxj2v jdt!#.

~3.13!

Metrics of this form, although without the overall conform
factor r (0) /c, appear in the Arnowitt-Deser-Misner~ADM !
formalism of general relativity@29#. There,c and 2v i are
refered to as thelapse functionandshift vector, repectively.
They serve to glue successive three-dimensional time sl
together to form a four-dimensional space-time@30#. In our
present case, providedr (0) /c can be regarded as a consta
each three-space is ordinary flatR3 equipped with the rect-
angular Cartesian metricgi j

(space)5d i j —but the resultant
space-time is in general curved, the curvature depending
the degree of inhomogeneity of the mean flowv.

In the geometric acoustics limit, sound will travel alon
the null geodesics defined bygmn . Even in the presence o
spatially varyingr (0) we would expect the ray paths to de
pend only on the local values ofc andv, so it is perhaps a bit
surprising to see the density entering the expression for
Unruh metric. An overall conformal factor, however, do
not affectnull geodesics, and thus variations inr (0) do not
influence the ray tracing. For steady flow, and in the case
only v is varying, it is shown in the Appendix that the nu
geodesics coincide with the ray paths obtained by apply
Hamilton’s equations for rays,

ẋi5
]v

]ki
, k̇i52

]v

]xi , ~3.14!

to the appropriate Doppler shifted frequency

v~x,k!5cuku1v•k. ~3.15!

Whenv lies in thex direction only, we can also rewriteds2

as

ds25
r (0)

c
$2@dx2~v1c!dt#@dx2~v2c!dt#2dy22dz2%.

~3.16!

This shows that thex-t plane null geodesics coincide wit
the expected characteristics of the wave equation in the b
ground flow.

e
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1344 PRE 62MICHAEL STONE
IV. SECOND-ORDER QUANTITIES

The fluid in a sound wave has average velocity zero, b
since the fluid is compressed in the half cycle when it
moving in the direction of propagation and rarefied when
is moving backward, there is a net mass current~and hence a
momentum density! which is of second order in the soun
wave amplitudea0. This becomes clearer if one solves t
equation

dj

dt
5v~j!5a0 cos~kj2vt ! ~4.1!

for the trajectoryx5j(t) of a fluid particle. This equation is
nonlinear and, solving perturbatively, one finds a secu
drift at second order ina0:

j~ t !5j~0!1oscillations1
1

2
a0

2S k

v D t1•••. ~4.2!

Although the time average of the Eulerian fluid velocityv is
zero, the time average of theLagrangianvelocity vL5 j̇ is
not. The difference beweeen the two average velocities is
Stokes drift. The Stokes drift isO(a0

2) while the wave equa-
tion is accurate only toO(a0), so care is necessary befo
using its solutions to evaluate the mass current. Similar pr
lems occur in defining the energy density and energy
momentum fluxes, which also require second-order ac
racy.

We can expand the velocity field as

v5v1v(1)1v(2)1•••, ~4.3!

where the second-order correctionv(2) arises as as conse
quence of the nonlinearities in the equations of motion. T
correction will possess both oscillating and steady com
nents. The oscillatory components arise because a str
harmonic wave with frequencyv0 will gradually develop
higher frequency components due to the progressive dis
tion of the wave as it propagates.~A plane wave eventually
degenerates into a sequence of shocks.! These distortions are
usually not significant in considerations of energy and m
mentum balance. The steady terms, however, repre
O(a0

2) alterations to the mean flow caused by the sou
waves, and these often possess energy and momentum
parable to that of the sound field.

Even if we temporarily ignore these effects and ret
only v(1) as determined from the linearized wave equati
the density and pressure will still have expansions

r5r (0)1r (1)1r (2)1•••,
~4.4!

P5P(0)1P(1)1P(2)1•••.

As before, the grading~n! refers to the number of powers o
the sound wave amplitude in an expression. The small
rameter in these expansions is the Mach number given
typical value ofv (1) divided by the local speed of sound.

Consider, for example, the momentum densityrv and the
momentum flux

P i j 5rv iv j1d i j P. ~4.5!
t,
s
t

r
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a

It is reasonable to define the momentum density and
momentum flux tensor associated with the sound field as
second-order terms

j (phonon)5^r (1)v(1)&1v^r (2)&, ~4.6!

and

P i j
(phonon)5r (0)^v (1)iv (1) j&1v i^r (1)v (1) j&1v j^r (1)v (1)i&

1d i j ^P(2)&1v iv j^r (2)&. ~4.7!

~The angular brackets indicate that we should take a t
average over a sound wave period. There is no need to
sider terms first order in the amplitude because these ave
to zero.! We see that we need to consider the second-o
contributions to bothP andr.

We can computeP(2) in terms of first-order quantities
from

DP5
dP

dm
Dm1

1

2

d2P

dm2 ~Dm!21O„~Dm!3
… ~4.8!

and Bernoulli’s equation in the form

Dm52ḟ (1)2
1
2 ~¹f (1)!

22v•“f (1) , ~4.9!

together with

dP

dm
5r,

d2P

dm2 5
dr

dm
5

r

c2 . ~4.10!

Expanding out and grouping terms of appropriate ord
gives

P(1)52r (0)~ḟ (1)1v•“f (1)!5c2r (1) , ~4.11!

which we already knew, and

P(2)52r (0)
1
2 ~¹f (1)!

21
1

2

r (0)

c2
~ḟ (1)1v•“f (1)!

2.

~4.12!

We see thatP(2)5A2gL whereL is the Lagrangian density
for our sound wave equation.

To extractr (2) in this manner we need more informatio
about the equation of state of the fluid than is used in
linearized theory. This information is most conveniently p
rametrized by the logarithmic derivative of the speed
sound with pressure~a fluid-state analog of the Gru¨neisen
parameter!. Using this together with the previous results f
P(2) , we find that

r (2)5
1

c2 P(2)2
1

r (0)
r (1)

2 d ln c

d ln r U
r(0)

. ~4.13!

V. CONSERVATION LAWS

While we cannot compute the ‘‘true’’ energy and mome
tum densities and fluxes without including nonlinear corre
tions to the motion, it is often more useful to find close
related quantities whose conservation laws are a co
quence of the linearized wave equation, and therefore p
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vide information about the solutions of this equation. O
‘‘general relativistic’’ formalism provides a sytematic way o
finding such conserved quantities. It is well known@31# that
any actionS automatically provides us with a covariant
conserved and symmetric energy-momentum tensorTmn de-
fined by

Tmn5
2

A2g

dS

dgmn
. ~5.1!

The functional derivative is here defined by

dS5E d4xA2g
dS

dgmn
dgmn. ~5.2!

It follows from the equations of motion derived fromS that

DmTmn50, ~5.3!

whereDm is the covariant derivative. For example,

DaAs
mn5]aAs

mn1Gag
m As

gn1Gag
n As

mg2Gas
g Ag

mn . ~5.4!

The Gbg
a are the components of the Levi-Civita´ connection

compatable with the Unruh metric, viz.,

Gbg
a 5gar@bg,r#, ~5.5!

where

@bg,r#5
1

2 S ]ggr

]xb
1

]gbr

]xg
2

]gbg

]xr D . ~5.6!

For our scalar field

Tmn5]mf (1)]
nf (1)2gmn~ 1

2 gab]af (1)]bf (1)!. ~5.7!

The derivatives with raised indices in Eq.~5.7! are defined
by

]0f (1)5g0m]mf (1)5
1

r (0)c
~ḟ (1)1v•“f (1)! ~5.8!

and

] if (1)5gim]mf (1)5
1

r (0)c
@v i~ḟ (1)1v•“f (1)!2c2] if (1)#.

~5.9!

Thus

T005
1

r (0)
3 S r (0)

1

2
~¹f (1)!

21
1

2

r (0)

c2
~ḟ (1)1v•“f (1)!

2D
5

c2

r (0)
3 S Wr

c2 D
5

c2

r (0)
3

r̃ (2) . ~5.10!
rThe last two equalities serve as a definition ofWr and r̃ (2) .
The quantityWr is often decribed as the acoustic ener
density relative to the frame moving with the local fluid v
locity @11#. Because its conservation requires a steady fl
rather than the absence of time-dependent external force
is more correctly a pseudoenergy density.

Using Eq.~4.11!, and Eq.~4.12! in the form

1
2 gab]af (1)]bf (1)5

c

r (0)
2

P(2) , ~5.11!

we can express the other components of Eq.~5.7! in terms of
physical quantities. We find that

Ti05T0i

5
c2

r (0)
3 S 1

c2~P(1)v (1)i1v iWr ! D
5

c2

r (0)
3 ~r (1)v (1)i1v i r̃ (2)!. ~5.12!

The first line in this expression shows that, up to an ove
factor,Ti0 is the energy flux—the first term being the rate
working by a fluid element on its neigbour, and the seco
the advected energy. The second line is written so as to
gest the usual relativistic identification of~energy flux!/c2

with the density of momentum. This interpretation, howev
requires thatr̃ (2) be the second-order correction to the de
sity, which it is not.

Similarly,

Ti j 5
c2

r (0)
3 ~r (0)v (1)iv (1) j1v ir (1)v (1) j

1v jr (1)v (1)i1d i j P(2)1v iv j r̃ (2)!. ~5.13!

We again see that if we identifyr̃ (2) with r (2) thenTi j has
the exactly the form we expect for the second-order mom
tum flux tensor.

The reason why the linear theory makes the errone
identification of r (2) with r̃ (2) is best seen if we setv
5const. Then the equation

] tT
001] iT

i050 ~5.14!

holds. This reads

c2

r (0)
3 @] tr̃ (2)1] i~r (1)v (1)i1v i r̃ (2)!#50. ~5.15!

This looks very much like the second-order continuity equ
tion

] tr (2)1] i~v (2)r (0)1r (1)v (1)i1v ir (2)!50, ~5.16!

since the linear theory ignoresv(2) . When we retain itsv(2)
term, however, Eq.~5.16! ceases to be an equation determ
ing r (2) , and instead, after time averaging, shows th
“•^r (0)v(2)&Þ0 in an inhomogeneous sound field@32#.
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1346 PRE 62MICHAEL STONE
We can also write the mixed covariant and contravari
components of the energy momentum tensorTn

m5Tmlgln in
terms of physical quantities. This mixed tensor turns ou
be more useful than the doubly contravariant tensor. Beca
we no longer enforce a symmetry between the indicesm and
n, the quantityWr is no longer required to perform doub
duty as both an energy and a density. We find

T0
05

c

r (0)
2 ~Wr1r (1)v(1)•v!,

T0
i 5

c

r (0)
2 S P(1)

r (0)
1v•v(1)D ~r (0)v (1)i1r (1)v (0)i ! ~5.17!

and

Ti
052

c

r (0)
2

r (1)v(1)i ,

~5.18!

Tj
i 52

c

r (0)
2 ~r (0)v (1)iv (1) j1v ir (1)v (1) j1d i j P(2)!.

We see thatr̃ (2) does not appear here, and all these ter
may be identified with physical quantities that are reliab
computed from solutions of the linearized wave equation

The covariant conservation law can be written eith
DmTmn50 or DmTn

m50. The two equations are consiste
with each other because the covariant derivative is define
that Dlgmn5gmnDl . To extract the physical meaning o
these equations we need to evaluate the the connection f
Gnl

m .
In what follows I will consider only a steady backgroun

flow, and, further, one for whichr0 , c, and henceA2g
5r (0)

2 /c can be treated as constant. To increase the read
ity of some expressions I will also choose units so thatr0
andc become unity and no longer appear as overall factor
the metric or the four-dimensional energy-momentum t
sors. I will, however, reintroduce them when they are
quired for dimensional correctness in expressions such
r (0)v(1) or Wr /c2.

From the Unruh metric we find

@ i j ,k#50,

@ i j ,0#5 1
2 ~] iv j1] jv i !,

@ i0,j #5 1
2 ~] iv j2] jv i !,

~5.19!
@0i ,0#5@ i0,0#52 1

2 ] i uvu2

@00,i #5 1
2 ] i uvu2,

@00,0#50.

I have retained the expression1
2 (] iv j2] jv i) in @ i0,j #, since

the previously cited paper by Pierce@28# indicates that our
wave equation also applies to weakly inhomogeneous r
tional flows.

We therefore find
t

o
se

s

r

so

ms

il-

in
-
-
as

a-

G00
0 5 1

2 ~v•¹!uvu2,

G i0
0 52 1

2 ] i uvu21 1
2 v j~] iv j2] jv i !,

G00
i 5 1

2 v i~v•¹!uvu22 1
2 ] i uvu2,

G i j
0 5 1

2 ~] iv j1] jv i !,

G j 0
i 52 1

2 v i] j uvu21 1
2 ~] jvk2]kv j !~vkv i2c2d ik!,

G jk
i 5 1

2 v i~] jvk1]kv j !. ~5.20!

From Eq.~5.6! we have

Gmb
m 5

1

Ag

]Ag

]xb
, ~5.21!

so, withA2g5const., the traceGmb
m is zero. One may verify

that the above expressions forGnl
m obey this identity.

We now evaluate

DmTm05]mTm01Gmg
m Tg01Gmn

0 Tmn

5]mTm01Gmn
0 Tmn. ~5.22!

After a little algebra we find

Gmn
0 Tmn5 1

2 ~] iv j1] jv i !~r (0)v (1)iv (1) j1d i j P(2)!.
~5.23!

Note the nonappearence ofr (1) and r̃ (2) in the final
expression—even though both quantities appear inTmn.

The conservation law therefore becomes

] tWr1] i~P(1)v (1)i1v iWr !1
1

2
S i j ~] iv j1] jv i !50,

~5.24!

where

S i j 5r (0)v (1)iv (1) j1d i j P(2) . ~5.25!

This is an example of the general form of energy law deriv
by Longuet-Higgins and Stuart, originally in the context
ocean waves@14,15#. ~See also@4# for a slightly earlier, but
less general, case.! The relative energy densityWr[T00 is
not conserved. Instead, an observer moving with the fl
sees the waves acquiring energy from the mean flow at a
given by the product of a radiation stressS i j with the mean-
flow rate of strain. Such nonconservation is not surprisi
Seen from the viewpoint of the moving frame, the mean fl
is no longer steady, and~pseudo!energy conservation re
quires a time-independent medium.

Note that, since we are assuming thatr (0) is a constant,
we should for consistency require“•v50. Thus theisotro-
pic part of the radiation stress~the part proportional tod i j )
does no work. This is fortunate because the nonlinear the
shows that the isotropic radiation stress contains a part
pendent ond ln c/d ln r that is missed by the linear approx
mation.~See, however,@33#.!

We now examine the energy conservation law com
from the zeroth component of the mixed energy-moment
tensor. We need
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DmT0
m5]mT0

m2Gm0
r Tr

m

5]mT0
m2@m0,r#Tmr

5]mT0
m2@ i0,0#Ti02@00,i #T0i2@ i0,j #Ti j .

~5.26!

We now observe thatTi05T0i while @00,i #52@ i0,0#, and
that @ i0,j #52@ j 0,i #, while Ti j 5Tji . Thus the connection
contribution vanishes. This form of the energy conservat
law is therefore

] t~Wr1r (1)v(1)•v!1] iF S P(1)

r (0)
1v•v(1)D

3~r (0)v (1)i1r (1)v (0)i !G50. ~5.27!

Here we see that the combinationWr1r (1)v(1)•v doescor-
respond to a conserved energy. This conservation law
originally derived by Blokhintsev@2# for slowly varying
flows, and more generally by Cantrell and Hart@3# in their
study of the acoustic stability of rocket engines.@See also
Refs.@5# and @13# Eq. ~5.18!.#

Now we turn to the equation for momentum conservati
Working as for the energy law we find

DmTj
m5]mTj

m2@m j ,r#Tmr

5]mTj
m2@0 j ,0#T002@ i j ,0#Ti02@0 j ,i #T0i

5]mTj
m2r (1)v (1)i] jv i . ~5.28!

Again note the cancellation of the terms containingr̃ (2) .
The covariant conservation equationDmTj

m50 therefore
reads

] tr (1)v (1) j1] i~r (0)v (1)iv (1) j1v ir (1)v (1) j1d i j P(2)!

1r (1)v (1)i] jv i50. ~5.29!

The connection terms have provided a source term for
momentum density. Thus, in an inhomogeneous flow fie
momentum is exchanged beween the waves and the m
flow.

If we accept that our wave equation continues to be va
for weakly inhomogeneous rotational flows, then from E
~5.29! we can derive an expression for the time average
the divergence of the radiation stress tensor:

^] i~r (0)v (1)iv (1) j1v ir (1)v (1) j1r (1)v (1)iv j1P(2)d i j !&

52^r (1)v (1)i&~] jv i2] iv j !1v j^] ir (1)v (1)i&. ~5.30!

The sound wave therefore exerts a body force on the b
ground flow, one part of which is analogous to the Lore
force, the role of the magnetic field being played by t
vorticity. The relation between this body force and the Io
danskii force on a line vortex is the same as that between
conventional Lorentz force and the Aharonov-Bohm force
a narrow flux tube@24,25#.
n
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VI. PHONONS AND CONSERVATION OF WAVE ACTION

If the mean flow varies slowly on the scale of a wav
length, the sound field can locally be approximated by
plane wave,

f~x,t !5a0 cos~k•x2vt !. ~6.1!

The frequencyv and the wave vectork are here related by
the Doppler-shifted dispersion relationv5v r1k•v, where
the relative frequencyv r5cuku is that measured in the fram
moving with the fluid. A packet of such waves moves at t
group velocity

U5 ẋ5c
k

uku
1v. ~6.2!

As the wave progresses through regions of varyingv, the
parametersk anda0 will slowly evolve. The change ink is
given by the ray tracing formula@Eq. ~A16!#

dkj

dt
52ki

]v j

]xj , ~6.3!

where the time derivative is taken along the ray:

d

dt
5

]

]t
1U•“. ~6.4!

The evolution of the amplitudea0 is linked with that of the
relative energy densityWr , through

^Wr&5
1

2
a0

2r (0)

v r
2

c2 . ~6.5!

For a homogeneous stationary fluid we would expect
macroscopic plane wave to correspond to a quantum co
ent state whose energy is, in terms of the~quantum! average
phonon densityN̄ and total volumeV,

Etot5V^Wr&5VN̄\v r . ~6.6!

Since it is a density of ‘‘particles,’’N̄ should remain the
same when viewed from any frame. Consequently, the r
tion

N̄\5
^Wr&
v r

~6.7!

should hold true generally. In classical fluid mechanics
quantity ^Wr&/v r is called thewave action@9,11,13#.

The time averages of other components of the ener
momentum tensor may also be expressed in terms ofN̄. For
the mixed tensor we find

^T0
0&5^Wr1v•r (1)v(1)&5N̄\v,

^T0
i &5 K S P(1)

r (0)
D1v•v(1)D ~r (0)v (1)i1r (1)v i !5N̄\vUi ,

^2Ti
0&5^r (1)v (1)i&5N̄\ki ,
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^2Tj
i &5^r (0)v (1)iv (1) j1v ir (1)v (1) j1d i j P(2)&5N̄\kjUi .

~6.8!

In the last equality we have used that^P(2)&50 for a plane
progressive wave.

If we insert these expressions for the time averages
the Blokhintsev energy conservation law~5.27!, we find that

]N̄\v

]t
1“•~N̄\vU!50. ~6.9!

We can write this as

N̄\S ]v

]t
1U•“v D1\vS ]N̄

]t
1“•~N̄U! D 50. ~6.10!

The first term is proportional todv/dt taken along the rays
and vanishes for a steady mean flow as a consequence o
Hamiltonian nature of the ray tracing equations. The sec
term must therefore also vanish. This vanishing repres
the conservation of phonons, or, in classical language,
conservation of wave action. Conservation of wave actio
an analogue of the adiabatic invariance ofE/v in the time-
dependent harmonic oscillator.

In a similar manner, the time average of Eq.~5.28! may
be written

05
]N̄kj

]t
1“•~N̄kjU!1N̄ki

]v i

]xj

5N̄S ]kj

]t
1U•“kj1ki

]v i

]xj D1kj S ]N̄

]t
1“•~N̄U! D .

~6.11!

We see that the momentum law becomes equivalen
phonon-number conservation combined with the ray trac
equation~A16!.

VII. DISCUSSION

The possibility of interpreting the time average of the m
mentum conservation law in terms of quantum quasipartic
warns us that we are dealing with pseudomomentum and
with Newtonian momentum@18#. Nonetheless, the quantit

^r (1)v(1)&5N̄\k is reliably computed from the linearize
wave equation and ispart of the true momentum. It is simply
not all of it. Even in the absence of a mean flow with
^r (2)v& contribution we still have to contend withr (0)^v(2)&,
and this can be important. As an example@18#, consider a
closed cylinder filled with fluid. At one end of the cylinder
piston is driven so as to generate plane sound waves w
completely span the cross section of the tube. At the o
end a second piston is driven at the same frequency with
phase adjusted so as to absorb the sound waves withou
flection. It easy to see that an extra pressure equal to^Wr& is
exerted on the ends of the tube over and above what
isotropic pressure acts on the ends and sides equally.
‘‘obvious’’ that this is the force per unit areaN̄\kc required
to generate and absorb the phonon beam ‘‘momentum.’’
to

the
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e
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to
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fortunately for this simple idea, it is equally obvious that t
time average center-of-mass velocity of the fluid in the tu
vanishes, so the true momentum density in the beam is
actly zero. Thêr (1)v(1)& contribution to the momentum den
sity is exactly cancelled by ar (0)^v2& counterflow. This Eu-
lerian streaming is driven by the fluid source term for^v(2)&
implicit in Eq. ~5.16! @32#. ~In a Lagrangian description th
particles merely oscillate back and forth with no secu
drift.! The momentumflux however is exactly the sameas if
~the italics are from@18#! there were no medium and th
phonons were particles possessing momentum\k. This is
frequently true: the flux of pseudomomentum is often eq
to the flux of true momentum toO(a2) accuracy. Pseudomo
mentum flux can therefore be used to compute forces. On
other hand, the density of true momentum in the fluid and
density of pseudomomentum are usually unrelated.2

It should be said that ther (0)^v2& counterflow will not
always cancel ther (1)^v1& wave pseudomomentum@35#. The
^v2& flow depends the geometry. It is found from the sour
equation~5.16! and from the force the sound field applies
the fluid. The latter will be small when there is no dissip
tion, as is the case in a superfluid, and for an isolated so
beam source in an infinite medium̂v2& will consist of a flow
directed radially inward toward the transducer of sufficie
magnitude to supply the mass flowing out along the sou
beam@32#. In the presence of dissipation the force becom
important, leading to acoustic streaming.

Consider our closed cylinder further. From Eq.~4.13! we
see that in a system with fixed^P&, and in the presence of th
sound wave, the mean density of the fluid will be reduced

^r (2)&52
^Wr&

c2

d ln c

d ln r U
r(0)

. ~7.1!

Since our cylinder has fixed volume, this density reduct
cannot take place. Instead, it is opposed by a pressure o
cylinder wall

DP5^Wr&
d ln c

d ln r U
r(0)

, ~7.2!

which must be added to the isotropic pressure in the abse
of the sound wave. The complete radiation stress tenso
therefore

^S i j &5^Wr&S kikj

k2 1d i j

d ln c

d ln r D . ~7.3!

This result goes back to Brillouin@34#. The true radiation
stress therefore differs from the pseudomomentum flux t
sor in its isotropic part. Forces computed from pseudom

2This does not mean that the attribution of momentum to a pho
in the two-fluid model for a superfluid is incorrect. In superflu
hydrodynamics ther (0)^v2& counterflow is accounted for separate

from the^r (1)v(1)&5N̄hk̄ normal component mass flux. The cou
terflow is included in the supercurrent needed to enforce“•(rnvn

1rsvs)50.
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mentum flux will therefore be incorrect when this pressure
important. See@36# for examples.
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APPENDIX: GEODESICS AND HAMILTONIAN FLOWS

In this appendix we show that the null geodesics of
Unruh metric coincide with conventional Hamiltonian opti
ray tracing. The ray tracing equations are derived fr
v(k,x) as

ẋ5
]v

]k
, k̇52

]v

]x
. ~A1!

In our casev(k,x)5cuku1v•k. Thus

dxi

dt
5v i1c

ki

uku
,

dki

dt
52

]v j

]xi
kj . ~A2!

We begin by noting that geodesics with an affine paramett
are stationary paths for the Lagrangian

L5
1

2
gmn

dxm

dt

dxn

dt
. ~A3!

To make connection with the ray tracing formalism, consid
the corresponding Hamiltonian

H5 1
2 gmnpmpn , ~A4!

and write down Hamilton’s equations witht playing the role
of time:

dxm

dt
5

]H

]pm
5gmnpn ,

dpm

dt
52

]H

]xm 52
1

2

]gab

]xm
papb . ~A5!

Combining these gives

d2xm

dt2 5
]gmb

]xa

dxa

dt
pm1gmnS 2

1

2

]gab

]xn D papb . ~A6!
ng
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n

e

r

To see that this is the geodesic equation, note that

dg2152g21~dg!g21, ~A7!

so, with (g)ab5gab and (g21)ab5gab, we can write

d2xm

dt2 1
1

2
gmnS ]gna

]xb
1

]gnb

]xa
2

]gab

]xn D dxa

dt

dxb

dt
50.

~A8!

We now examine these equations for the particular cas
the Unruh metric. We define a four-vectorpm5(v,2ki) so
that pmxm5vt2k•x. Then

H5 1
2 gmnpmpn5 1

2 @~v2v•k!22c2uku2#. ~A9!

Hamilton’s equations become

dx0

dt
5

dt

dt
5

]H

]v
5v2v•k ~A10!

and

dxi

dt
52

]H

]ki
5v i~v2v•k!1c2ki . ~A11!

For null geodesics (v2v•k)22c2uku250, or (v2v•k)
5cuku. Thus

dxi

dt
5v i1

c2ki

~v2v•k!
, ~A12!

or

dxi

dt
5v i1c

ki

uku
, ~A13!

which is the group velocity equation. We also find

dv

dt
52

]H

]t
50 ~A14!

if the flow is steady, and

2
dki

dt
52

]H

]xi 5~v2v•k!
]v j

]xi
kj , ~A15!

which is equivalent to the momentum evolution equation

dki

dt
52

]v j

]xi
kj . ~A16!
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